Background-subtraction of fast-scan cyclic staircase voltammetry at protein-modified carbon-fiber electrodes.

نویسندگان

  • M A Hayes
  • E W Kristensen
  • W G Kuhr
چکیده

Background-subtraction techniques were applied to the voltammetry of nicotinamide adenine dinucleotide (NADH) at protein-modified carbon-fiber microelectrodes. The background currents at carbon-fiber electrodes were stable and voltammetric scans immediately before or after the analyte were effectively used for background subtraction. Digital step-potential waveforms were used to excite these carbon-fiber electrodes, where the resulting voltammetric analysis assessed the optimal switching and initial potentials and the electrochemical response time was determined. The initial potential was 0.0 V and the switching potential 1.1 V (versus Ag/AgCl) and the response time was approximately 300 ms. Some sensitivity to NADH was lost and voltammetric prescans were required at protein-modified electrodes to obtain a stable baseline. Current versus time was assessed by the average current of the faradaic region from each voltammogram and by differential current; the average current minus the current from a non-faradaic potential range. Differential current assessments discriminated against artifacts caused by pH (as high as 1.0 pH unit) and ionic strength flux (100 mM). These background-subtraction techniques allowed the faradaic information to be obtained quickly and conveniently while maximizing sensitivity and maintaining selectivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry

Herein, fast Fourier transformation square-wave voltammetry (FFT-SWV) as a novel electrochemical determination technique was used to investigate the electrochemical behavior and determination of Riboflavin at the surface of a nanocomposite modified carbon paste electrode. The carbon paste electrode was modified by nanocomposite containing Samarium oxide (Sm2O3)/reduced gra...

متن کامل

Cyclic Voltammetry of Cobalt Chloride with L- Carrageenan (LK) Using Glassy Carbon Electrode

The redox behavior cobalt chloride was studied voltammetrically in presence and absence of L- Carrageenan (LK) natural polymer using glassy carbon electrodes in 0.1 M KCl supporting electrode. Scan rates are studied for the redox behaviors for CoCl2 alone or in presence of L- Carrageenan (LK) natural polymer. Stability constants for the interaction of cobalt ions with L - Carageenan (LK) natura...

متن کامل

Cyclic voltammetry of bulk and nano manganese sulfate with Doxorubicin using glassy Carbon electrode

The cyclic voltammetry of both bulk manganese sulfate (BMS) and nano manganese sulfate (NMS) were studied using 0.1M KCl supporting electrolyte and glassy carbon working electrode. The redox behavior for both bulk (BMS) and MnSO4 (NMS) sulfate was studied voltammetrically in presence and absence of Doxorubicin (DR) using three electrodes system, silver- silver chloride (Ag/AgCl), pla...

متن کامل

Cyclic voltammetry of bulk and nano manganese sulfate with Doxorubicin using glassy Carbon electrode

The cyclic voltammetry of both bulk manganese sulfate (BMS) and nano manganese sulfate (NMS) were studied using 0.1M KCl supporting electrolyte and glassy carbon working electrode. The redox behavior for both bulk (BMS) and MnSO4 (NMS) sulfate was studied voltammetrically in presence and absence of Doxorubicin (DR) using three electrodes system, silver- silver chloride (Ag/AgCl), pla...

متن کامل

Electrocatalytic oxidation of sulfite Ion at the surface carbon ceramic modified electrode with prussian blue

The redox properties of sulfite ion has been examind using cyclic voltammetry in acetonitrile solvent at the surface of gold, pelatin and glassy carbon electrodes. It has bben found tha, sulfite ion exhibits two electron oxidation peak with EC’ mechanism. A novel chemically modified electrode containing Prussian blue complex and multi wall carbon nanotubes (MWCNs) was achieved on the surface of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 13 12  شماره 

صفحات  -

تاریخ انتشار 1998